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Abstract
Electronic Raman scattering of two-band superconductors is studied based on the
time-dependent Landau–Ginzburg theory. The focus is on the possible features of the π phase
shift between the two superconducting order parameters which may be realized in the
Fe-pnictides. The Raman response was computed up to the Gaussian fluctuations in the
functional integral formalism including the long range Coulomb interaction with the four
channels of symmetric and antisymmetric combinations of the phases and amplitudes of the two
order parameters. The Raman spectra is found to be composed of the quasiparticle and the
phase collective mode contributions without mixing between them. The contributions from the
quasiparticle and the symmetric phase collective mode (the Anderson–Bogolyubov mode) are
similar to the two-band superconductors without the π phase shift. The antisymmetric phase
mode (the Leggett mode) originates from the fluctuations of the relative phase of the two order
parameters. It lies between twice the smaller gap and twice the larger gap and is damped by the
quasiparticles. However, this mode is eliminated by the long range Coulomb interaction in the
zero-wavenumber limit.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electronic Raman scattering is a very useful probe in studying
the symmetry of the order parameter and the excitations
(in the zero-wavenumber limit) of superconductors [1].
It plays an especially important role in the study of
unconventional and exotic superconductors owing to its
strong dependence on the symmetry of superconducting order
parameters. It has been instrumental in understanding and
clarifying various excitations in the cuprate high temperature
superconductors [2]. Currently the iron-based pnictide
superconductors are being studied very actively with a prospect
of opening a key window to understanding the mechanism

3 Author to whom any correspondence should be addressed. Present address:
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Agricultural Road, Vancouver, BC, V6T 1Z1, Canada.

of high temperature superconductivity. A leading proposal
for the orbital pairing symmetry is the sign-reversed full-gap
state [3, 4]. It is the ground state of a two-band superconductor
where both pairing order parameters, �1 and �2, on the two
bands have full gaps while acquiring the π phase shift between
them. A repulsive interband interaction is turned to induce
pairing by generating the sign reversal between the two order
parameters. It seems to be able to explain the experimental
observations indicating the full gap as well as a gap with
nodes [5, 6].

In this paper, the Raman response of the s± or sπ pairing
state is studied in the framework of time-dependent Landau–
Ginzburg theory. This is because the physical properties, in
particular the low energy excitations in the ordered state (the
superconducting state), are most clearly described and also
understood in terms of order parameters. The thermodynamic
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properties are very succinctly expressed by the free energy
of the time-independent (static) configuration of the order
parameters. This free energy can be derived from the
microscopic BCS theory [7].

To understand the Raman response of superconductors
in terms of the order parameters, we have to consider
the dynamics, namely the time dependence of the order
parameters. This time-dependent Landau–Ginzburg theory
has been widely used in the context of the quantum phase
transition [8]. Reference [8] employed the method of the
functional integral, and the partial reason for this is that the
order parameters exhibit themselves manifestly from the early
stage of development. We adapt the approach of [8] to the
problems of two-band superconductors.

The excitations of the one-band superconductor consist of
the quasiparticle excitation and the collective excitation. In
the case of the conventional s-wave superconductors, these
excitations appear in the Raman response at energy ω = 2�

(where � is the superconducting gap) and ω = vsq (vs is
a velocity), respectively. The collective excitation is a soft
sound-like wave mode, and is often called the Anderson–
Bogolyubov mode [9, 10]. However, the long range Coulomb
interaction lifts the Anderson–Bogolyubov mode to plasmon
excitation of a finite energy at zero wavenumber [11].

In the case of two-band superconductors, in addition
to the excitations mentioned above, there can be other
excitations due to the presence of more degrees of freedom.
In particular, Leggett suggested a collective mode which
stems from the out-of-phase oscillation of two phases of two
superconducting order parameters with energy below twice
the smaller gap energy [12]. The Leggett mode was reported
to be observed in a two-band MgB2 superconductor [13].
We note a few theoretical works on the Raman response of
Fe-pnictides [14, 15]. The work by Chubukov et al [14]
considered the response in the A1g geometry and the existence
of a resonance peak below twice the gap for the pairing gap is
claimed. The long range Coulomb interaction is argued not to
contribute to the Raman response in A1g geometry if particle–
hole symmetry is present. The work by Boyd et al [15] mainly
focused on the case with the anisotropic gap amplitudes and
considered only the quasiparticle contributions dressed by the
long range Coulomb interaction.

In our study we have formulated a time-dependent
Landau–Ginzburg effective action (in imaginary time) of the
two-band superconductor, which also enables us to compute
general correlation functions by introducing source fields. Our
results may be summarized as: (1) one collective mode exists
with energy between twice the smaller and twice the larger gap
energy and this mode stems from the interaction of relative
superconducting phases (thus it is essentially the Leggett
mode). (2) The screening effect of the long range Coulomb
interaction eliminates the above-mentioned collective mode.
If, on the other hand, the long range Coulomb interaction is
not taken into account, the collective mode indeed shows up
in the Raman response. (3) The π -phase shift is not directly
observable in the Raman response, since basically it is squared
to one.

This paper is organized as follows: in sections 2–6, the
model, its functional formulation and the derivation of the

effective action (including the long range Coulomb interaction)
are presented. The collective excitations and the Raman
response in the presence of the long range Coulomb interaction
are investigated in section 7 and 8. We close this paper
with a summary in section 9. Diverse polarization functions
appearing in the main text are collected and computed in the
appendices. For completeness, a general proof of the gauge
invariance and the charge conservation of the electromagnetic
response of two-band superconductors based on the functional
approach is presented in appendix C. To present the results
in a compact way we have introduced various notations. For
the reader’s convenience we have tried to remind them in
appropriate places in the text.

2. Model

To avoid the complexities of the most general models we
choose a specific model of the sπ pairing state [3, 6] of the
iron-based pnictide superconductors. This model is described
by the following two-band Hamiltonian with a repulsive
interband pairing interaction. This model can be motivated
by the unbiased renormalization group approach [16]. More
concretely, starting from the bare Hamiltonian which also
includes an intraband pairing interaction, the renormalization
group trajectory flows into a region where the interband
pairing interaction dominates (see equation (14) and figure 6(a)
of [16]). The model Hamiltonian is given by

Ĥ = ĤK + ĤP + ĤC + μ
∑

k,σ

(
c†

kσ ckσ + f †
kσ fkσ

)
, (1)

where ckσ and fkσ are the hole-like band and the electron-like
band operator, respectively. These bands are believed to play
a key role in the pnictide superconductors. σ = ↑,↓ is a spin
index and μ is the chemical potential which will be taken to be
zero hereafter. The kinetic energy Hamiltonian ĤK is given by

ĤK =
∑

k,σ

(εckc†
kσ ckσ + ε f k f †

kσ fkσ ), (2)

where εck and ε f k are the hole-like and electron-like energy
band, respectively. These bands have tetragonal symmetry.
The hole-like energy band εck is centred at k = (0, 0), while
the electron-like energy band ε f k is centred at k = (π/a, π/a).
a is a lattice spacing in the x–y plane. The explicit form of each
band is

εck = ε0c − tc(ka)2 + t ′
c(ka)4 cos(4φ),

ε f k+( π
a , π

a ) = −ε0 f + t f (ka)2 + t ′
f (ka)4 cos(4φ),

(3)

where k2 = k2
x + k2

y and φ = tan−1(ky/kx). tc, t f > 0,
ε0c, ε0 f > 0, |t ′

c| � tc , |t ′
f | � t f are assumed. The dispersion

along the z direction is ignored, making the model effectively
two-dimensional.

The interband pairing Hamiltonian ĤP is given by

ĤP = U
∑

x

[c†
x↑c†

x↓ fx↓ fx↑ + h.c.], (4)

where x denotes the direct lattice sites in the x–y plane. U is
the interband pairing interaction, which is implicitly assumed
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to vanish above an energy cutoff ωD , namely for |εc/ f k| >

ωD . For the sπ state U is positive, which is the case to be
considered in this paper, while for the conventional s-wave
state with no relative phase it should be taken to be negative.

ĤC is the Hamiltonian of the long range Coulomb
interaction:

ĤC = 1

2

∑

x,y

e2

|x − y| (ρx − ρ0)(ρy − ρ0), (5)

where ρx = ρcx + ρ f x with ρcx = ∑
σ c†

xσ cxσ and ρ f x =∑
σ f †

xσ fxσ . ρ0 is the uniform positive charge background
required for the charge neutrality of the whole system.

3. The functional integral formulation

The partition function of the Hamiltonian (1) in the form of a
functional integral is given by [17] (τ is an imaginary time and
β = 1/kBT )

Z [J ] =
∫

D[c, f ]e− ∫ β

0 dτ [∑x(c
†∂τ c+ f †∂τ f )+H (τ )]−SJ , (6)

where we have inserted a source term (q is a wavenumber)

SJ = −
∫ β

0
dτ
∑

q

ρ̃q(τ )J−q(τ ) (7)

which is necessary in computing the correlation functions of
the generalized density operator of the (non-resonant part of)
Raman scattering. The generalized density operator ρ̃q is
defined by

ρ̃q =
∑

k,σ

(γ c
k c†

k+q/2σ ck−q/2σ + γ
f

k f †
k+q/2σ fk−q/2σ ). (8)

For the non-resonant electronic Raman scattering, the
coefficients γ

c/ f
k are given by

γ
c/ f
k =

∑

α,β

êI
α

∂2εc/ f k

∂kα∂kβ

êF
β, (9)

where êI and êF are the polarization vector of the incoming and
outgoing photon, respectively. α and β label the coordinates
perpendicular to the photon momentum which is taken to be
along the z axis in our case. Note that c and f appearing
in the functional integral are now anticommuting Grassman
variables [17].

The correlation function of the generalized density
operator χρ̃ρ̃ is defined by

χρ̃ρ̃(τ − τ ′, q) = −〈Tτ ρ̃q(τ )ρ̃−q(τ
′)〉

= − δ2 ln Z [J ]
δ J−q(τ )Jq(τ ′)

∣∣∣∣
J→0

. (10)

The electronic Raman cross section is proportional to the
dynamical structure factor S(ω, q → 0) which is related to
χρ̃ρ̃ in the following way:

S(ω, q) = [1 + nB(ω)]
[

− 1

π
Im χ R

ρ̃ρ̃ (ω, q)
]
, (11)

where nB(ω) is the Bose distribution function and χ R
ρ̃ρ̃

denotes
the retarded correlation function [18–20]. The formalisms for
the electronic Raman scattering of superconductors (including
the generalizations to unconventional superconductors) are
well expounded in [18–21].

The next step is to employ the Hubbard–Stratonovich
transformations [17] to decouple the electron–electron
interactions: ĤP and ĤC.

To decompose ĤP into the pairing channel it is necessary
to change the order of either the c or f operator (but not both)
since U is of positive sign. Flipping the order of the c operator
the pairing Hamiltonian becomes

HP = −U
∑

x

(c†
↓xc†

↑x f↓x f↑x + f †
↑x f †

↓xc↑xc↓x). (12)

Applying the Hubbard–Stratonovich transformation in the
pairing channel, we obtain

e− ∫ β

0 dτ HP(τ ) =
∫

D[�c,� f ]e−SP ,

SP =
∫

dτ
∑

x

[
�∗

cx(τ )� f x(τ )

U
+ �∗

f x(τ )�cx(τ )

U

− c†
x↓(τ )c†

x↑(τ )�cx(τ ) − f †
x↑(τ ) f †

x↓(τ )� f x(τ )

− �∗
cx(τ )cx↑(τ )cx↓(τ ) − �∗

f x(τ ) fx↓(τ ) fx↑(τ )

]
.

(13)

�c/ f x(τ ) are nothing but the (fluctuating) superconducting
order parameters.

The Coulomb interaction can also be decomposed in a
similar way:

e− ∫ β

0 dτ HC(τ ) =
∫

D[φ] e−SC ,

SC =
∫ β

0
dτ
∑

q

[ 1
2 V −1

q φ−q(τ )φq(τ )

− iφ−q(τ )ρq(τ )],

(14)

where Vq is the Coulomb matrix element:

V −1
q =

⎧
⎪⎪⎨

⎪⎪⎩

|q|2
4πe2

, 3-dimension,

|q|
2πe2

, 2-dimension.

(15)

The boson field φ(τ) plays the role of the scalar potential of
electromagnetic fields. Now the partition function Z becomes

Z =
∫

D[�c,� f , φ]
∫

D[c, f ]e−SK−SC−SP−SJ , (16)

where SK is the action for the kinetic term ĤK:

SK =
∫ β

0
dτ

[∑

x,σ

(c†
xσ ∂τ cxσ + f †

xσ ∂τ fxσ ) + HK(τ )

]
. (17)

Note that the fermion variables c, f appear in (16)
quadratically, so that they can be integrated out exactly using
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the Gaussian integration formula of Grassman variables [17].
Let us introduce the following Nambu spinors:

�k =
(

�ck

� f k

)
, �ck =

(
ck↑

c†
−k↓

)
,

� f k =
(

fk↑
f †
−k↓

)
.

(18)

In terms of the Nambu spinors the generalized density operator
ρ̃q, (8), can be re-expressed as

ρ̃q =
∑

k

�
†
k+q/2

(
γ c

k τ3 0
0 γ

f
k τ3

)
�k−q/2, (19)

where τ1,2,3 are the Pauli matrices acting on the particle–hole
space. The parts containing the Nambu spinors in the actions
of SC and SP can be written in the following ways:

SNambu
C =

∫ β

0
dτ
∑

k,q

�
†
k+q/2(τ )M̂C�k−q/2(τ ),

M̂C = (−i)I2 ⊗ τ3
φ−q(τ )√

N
,

(20)

where I2 is a 2 × 2 unit matrix acting on the space of c, f
species. N is the number of lattice sites.

The sum SK + SNambu
P can be expressed as

SK + SNambu
P =

∫ β

0
dτ
∑

x

�†
x (τ )M̂P�x(τ ),

M̂P =
(

K̂c 0
0 K̂ f

)
,

(21)

where the kernel matrices are given by

K̂c =
(

∂τ + εc(−i∇) �c

�∗
c ∂τ − εc(−i∇)

)
,

K̂ f =
(

∂τ + ε f (−i∇) ζ� f

ζ�∗
f ∂τ − ε f (−i∇)

)
,

(22)

where ζ = −1 is a factor which keeps the track of the π phase
difference of the sπ pairing.

The source term can also be expressed as

SJ =
∫ β

0
dτ
∑

k,q

�
†
k+q/2(τ )M̂J �k−q/2(τ ),

M̂J = −J−q(τ )

(
γ c

k τ3 0
0 γ

f
k τ3

)
.

(23)

Integrating out fermions (this means doing the c, f
integral in (16)) we arrive at

Z [J ] =
∫

D[�c,� f , φ]e−SB,

SB =
∫ β

0
dτ

[∑

x

1

U
[�∗

cx(τ )� f x(τ ) + �∗
f x(τ )�cx(τ )]

+
∑

q

1
2 V −1

q φ−q(τ )φq(τ )

]
− ln det(M̂P + M̂C + M̂J )

(24)

SB is the effective action of bosonic excitations: �c/ f and φ.
Equation (24) is a formally exact result. The difficult part is
to compute the determinant factor ln det(M̂P + M̂C + M̂J ) in a
closed form.

We will compute the partition function (24) employing
a saddle point approximation (plus incorporating Gaussian
fluctuations around the saddle point). The saddle point
condition, as expected, is nothing other than the gap equations
for the two-band superconductors. Furthermore, the Gaussian
fluctuations will determine the dynamics of the collective
excitations of the two-band superconductors.

4. The saddle point solution: the gap equations

The saddle point solution is determined by the condition that
the first-order functional derivatives of SB with respect to
�c, � f , and φ vanish. The source field J should be put
to zero in the determination of a saddle point, since it is
just a (infinitesimally small) formal device introduced for the
computation of correlation functions:

δSB

δφ

∣∣∣∣
�c0,� f 0,φ0

= δSB

δ�c

∣∣∣∣
�c0,� f 0,φ0

= δSB

δ� f

∣∣∣∣
�c0,� f 0,φ0

= 0,

(25)
where �c0,� f 0, φ0 denote the saddle point values. These
functional derivatives can be computed using the following
matrix identity:

δ ln det M = δ Tr ln M = Tr(M−1δM). (26)

The φ equation is easily shown to give φq 
=0,0 = 0, and φq=0,0

enforces the overall charge neutrality condition. The �c/ f

equations yield the gap equations:

�c/ f 0(k) = U

N

∑

k′

tanh(β E f/ck′/2)

2E f/ck′
� f/c 0(k′), (27)

where (from now on, T = 0 will be assumed)

Ec/ f k =
√

ε2
c/ f k + |�c/ f 0(k)|2 (28)

is the (bare) quasiparticle energy. The gap equation (27) admits
the real s-wave solution of �c0 and � f 0 with the same sign.
This solution represents the relative π -phase between two gaps
due the phase factor ζ .

Using the explicit form of the energy bands of (3) the gap
equations reduce to

�c0 = � f 0λ f ln
2ωD

� f 0
, � f 0 = �c0λc ln

2ωD

�c0
, (29)

where λc/ f are the dimensionless coupling constants:

λc/ f = U Dc/ f , Dc/ f = 1

4π tc/ f
, (30)

where Dc/ f is the density of states at the Fermi energy.
Choosing ωD = 100 meV, λc = 0.2171 and λ f = 0.6676,
we obtain that �c = 20 meV and � f = 10 meV, which are
compatible with experimental data. These will be taken as the
representative input for the presentation of our results.
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5. Gaussian fluctuations

Once a saddle point is determined, we can incorporate the
fluctuations around the saddle point exactly in quadratic order.

The fluctuations of the superconducting order parameters
can be separated from the saddle point value up to quadratic
order in the following way (let us use 4-vector notation x =
(x, τ )):

�c/ f (x) = [�c/ f 0 + δ�c/ f (x)]eiθc/ f (x)

≈ �c/ f 0 + δ�c/ f (x) + �c/ f 0[iθc/ f (x)]
− 1

2�c/ f 0θ
2
c/ f (x) + δ�c/ f [iθc/ f (x)], (31)

where δ�c/ f (x) and θc/ f (x) are the amplitude fluctuation and
the phase fluctuation, respectively. This expansion represents
a spin-wave approximation (along with amplitude fluctuation)
where the vortex excitations are ignored. Plugging (31)
into (22), the kernel matrices K̂c/ f can be decomposed into
the saddle point part, the first-order and the second-order
fluctuation parts as follows:

K̂c = K̂c0 + δK̂ (1)
c + δK̂ (2)

c ,

K̂c0 =
(

∂τ + Ec �c0

�c0 ∂τ − Ec

)
,

δK̂ (1)
c = τ1δ�c(x) − τ2�c0θc(x),

δK̂ (2)
c = − 1

2τ1�c0θ
2
c (x) − τ2δ�c(x)θc(x).

(32)

K̂ f = K̂ f 0 + δK̂ (1)
f + δK̂ (2)

f ,

K̂ f 0 =
(

∂τ + E f ζ� f 0

ζ� f 0 ∂τ − E f

)
,

δK̂ (1)
f = ζ τ1δ� f (x) − ζ τ2� f 0θ f (x),

δK̂ (2)
f = −ζ 1

2τ1� f 0θ
2
f (x) − ζ τ2δ� f (x)θ f (x).

(33)

As for the fluctuation of φq 
=0, its saddle point value is null, so
that φq 
=0 itself can be treated as a fluctuation.

The inverse of K̂c/ f 0 is the (bare) one-particle Green’s
function in the superconducting state:

− K̂ −1
c0 = Ĝc(iε, k) = iετ0 + εckτ3 + �c0τ1

(iε)2 − E2
ck

,

−K̂ −1
f 0 = Ĝ f (iε, k) = iετ0 + ε f kτ3 + ζ� f 0τ1

(iε)2 − E2
f k

,

(34)

where Ec/ f k is the bare quasiparticle energy defined in (28).
The one-particle Green function in a 4 × 4 matrix form is

Ĝ(iε, k) =
(

Ĝc(iε, k) 0
0 Ĝ f (iε, k)

)
. (35)

Plugging in (32) and (33) into (24) and expanding it with
respect to δ K̂ (1,2)

c/ f and φ up to the second order, we obtain the
Gaussian effective action. The terms which are of first order in
fluctuations vanish owing to the saddle point condition. Then
the partition function can be approximated by

Z [J ] ≈ e−Ssad

∫
D[δ�c/ f , θc/ f , φ]e−SGau, (36)

where Ssad is the saddle point contribution whose explicit form
is not necessary in our discussion and SGau is the second-order
Gaussian effective action [x = (x, τ )]:
SGau =

∫ β

0
dτ

{∑

x

2

U
δ�c(x)δ� f (x)

−
∑

x

1

U
�c0� f 0[θc(x) − θ f (x)]2

+
∑

q

1
2 V −1

q φ−q(τ )φq(τ )

}

+
∫ β

0
dτ
∑

x

tr[Ĝc(0)K̂ (2)
c (x) + Ĝ f (0)K̂ (2)

f (x)]

+ 1
2

∑

k,q

tr[Ĝc(k + q)V̂c(q)Ĝc(k)V̂c(−q)]

+ 1
2

∑

k,q

tr[Ĝ f (k + q)V̂ f (q)Ĝ f (k)V̂ f (−q)], (37)

where more 4-vector notations are introduced: k = (iε, k) and
q = (iω, q). The traces are over the Pauli matrices. The vertex
factors Vc/ f (q) are given by

V̂c(q) =
[
−γ c

k+q/2 Jq + (−i)
φq√

N

]
τ3

+ δ�c(q)τ1 − �c0θc(q)τ2,

V̂ f (q) =
[
−γ

f
k+q/2 Jq + (−i)

φq√
N

]
τ3

+ ζ δ� f (q)τ1 − (ζ� f 0)θ f (q)τ2.

(38)

The Gaussian action (37) can be decomposed into three pieces:
SJ 2 which is quadratic in Jq , SJ 1 which is linear in Jq , and SJ 0,
which does not depend on Jq . The explicit form of SJ 2 is

SJ 2 = 1
2

∑

q

[π c
33,γ γ (q) + π

f
33,γ γ (q)]Jq J−q, (39)

where the polarization functions π
c/ f
33,γ γ are defined in

appendix A. In fact, (39) (being plugged into (10)) yields the
correlation function which is identical with that obtained from
the BCS mean-field theory (without Coulomb correction).

To simplify notations let us introduce the following
(column) vector (T is a matrix transpose):

Xq = [δ�c(q), δ� f (q),�c0θc(q),� f 0θ f (q)]T. (40)

Then SJ 1 is given by

SJ 1 = 1

2

∑

q

{
i[π c

33,γ 1(q) + π
f

33,γ 1(q)] Jqφ−q√
N

+ i[π c
33,1γ (q) + π

f
33,1γ (q)] J−qφq√

N

}

+ 1
2

∑

q

[Jq Zq · X−q + J−q Z̃−q · Xq], (41)

where (the dot between X−q and Zq denotes a matrix product
and all of the polarization functions are defined in appendix A)

Zq = [−π c
31,γ 1(q),−ζπ

f
31,γ 1(q), π c

32,γ 1(q), ζπ
f

32,γ 1(q)],
Z̃−q = [−π c

13,1γ (q),−ζπ
f

13,1γ (q), π c
23,1γ (q), ζπ

f
23,1γ (q)].

(42)

5
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Note that, in spite of their appearances, Zq and Z̃−q are, in
fact, independent of the phase factor ζ , since the polarization
functions π

f
13,1γ , π

f
31,γ 1, π

f
32,γ 1 and π

f
23,1γ are proportional to

the phase factor ζ . Namely the phase factor is squared to one,
ζ 2 = 1.

Let us also define a 4 × 4 matrix �(q) (the argument q
of the polarization functions is suppressed below for notational
simplicity):

�(q) =

⎡
⎢⎢⎢⎣

π c
11

2
U −π c

12 0
2
U π

f
11 0 −π

f
12

−π c
21 0 −� f 0

�c0

2
U + π̃ c

22
2
U

0 −π
f

21
2
U − �c0

� f 0

2
U + π̃

f
22

⎤
⎥⎥⎥⎦ ,

(43)
where

π̃
c/ f
22 (q) = π

c/ f
22 (q) + 1

N

∑

k

1

Ec/ f k
. (44)

A simple calculation shows that

1

N

∑

k

1

Ec/ f k
= Dc/ f ln

2ωD

�c/ f 0
. (45)

Now SJ 0 takes the following form:

SJ 0 = 1
2

∑

q

[
V −1

q − (π c
33 + π

f
33)
]
φqφ−q

+ i
1

2

1√
N

∑

q

[φq(Yq · X−q) + φ−q(Ỹ−q · Xq)]

+ 1
2

∑

q

XT
−q�(q)Xq, (46)

where

Yq = [−π c
31(q),−ζπ

f
31(q), π c

32(q), ζπ
f

32(q)]
Ỹ−q = [−π c

13(q),−ζπ
f

13(q), π c
23(q), ζπ

f
23(q)].

(47)

Note that Yq and Ỹ−q are also independent of ζ by the
same reason as Zq and Z̃−q . From the explicit form of the
polarization functions one can easily check that the matrix
�(q) is also independent of the phase factor ζ . Thus we find
that the presence of the π -phase shift is not manifest, at least
in the present approach of the saddle point approximation plus
Gaussian fluctuations.

At this stage the functional integral takes the following
form:

Z [J ] ≈ e−Ssad−SJ 2

∫
D[δ�c/ f , θc/ f , φ]e−SJ 1−SJ 0. (48)

In section 6 we perform the functional integral of (48) over φ.

6. Influences of long range Coulomb interaction

The functional integral over φ amounts to incorporating the
long range Coulomb interaction. The functional integral
of (48) over φ can be done exactly, since it is a Gaussian
integral. The action SJ 0 has a piece which is quadratic in φ:

S(2)
φ = 1

2

∑

q

D−1(q)φqφ−q ,

D−1(q) ≡ 1

V (q)
− [π c

33(q) + π
f

33(q)].
(49)

Collecting the terms linear in φ from SJ 0 and SJ 1, we find

S(1)
φ = i

2

1√
N

∑

q

{φq[J−q(π
c
33,1γ + π

f
33,1γ ) + Yq · X−q ]

+ φ−q [Jq(π
c
33,γ 1 + π

f
33,γ 1) + Ỹ−q · Xq]}, (50)

where Xq and Yq are defined in (40) and (47), respectively. The
functional integral to be done is

∫
D[φ]e−S(2)

φ −S(1)
φ . (51)

Now the integral is straightforward and the result is

exp

{
− 1

2

∑

q

D(q)[J−q(π
c
33,1γ + π

f
33,1γ ) + Yq · X−q ]

× [Jq(π
c
33,γ 1 + π

f
33,γ 1) + Ỹ−q · Xq]

}
. (52)

From the exponent of (52), we again obtain the terms quadratic
and linear in Jq , and independent of Jq . These terms can be
combined with the results obtained in the previous section,
namely SJ 2, SJ 1 and SJ 0. These terms coming from the
integration over φ represent the renormalization by long range
Coulomb interaction. The action which is quadratic in J
becomes (the superscript r indicates that the renormalization
by Coulomb interaction is incorporated)

Sr
J 2 = 1

2

∑

q

J−q Jq{π c
33,γ γ + π

f
33,γ γ

+D(q)(π c
33,γ 1 + π

f
33,γ 1)(π

c
33,1γ + π

f
33,1γ )}, (53)

where the last piece proportional to D(q) comes from the
renormalization by Coulomb interaction. The action which is
independent of J becomes (see (40) for the definition of Xq)

Sr
J 0 = 1

2

∑

q

XT
−q�

r(q)Xq, (54)

where the elements of the renormalized matrix �r are given by
(i, j = 1, 2, 3, 4, and see (47) for the definition of Yq )

[�r(q)]i j = [�(q)]i j + D(q)Yq,i Ỹ−q, j . (55)

The action which is linear in Jq becomes

Sr
J 1 = 1

2

∑

q

(Jq Wq · X−q + J−q W̃−q · Xq), (56)

where (see (42) for the definition of Zq)

Wq = Zq + D(q)[π c
33,γ 1(q) + π

f
33,γ 1(q)]Yq,

W̃−q = Z̃−q + D(q)[π c
33,1γ (q) + π

f
33,1γ (q)]Ỹ−q .

(57)

Again the renormalization by Coulomb interaction is reflected
in the terms proportional to D(q) in (57).

At this step the functional integral has been reduced to

Z [J ] ≈ e−Ssad−Sr
J 2

∫
D[X]e−Sr

J 0−Sr
J 1 . (58)

Noting that Sr
J 0 is quadratic in Xq and that Sr

J 1 is linear in
Xq , the functional integral of (58) can be done exactly to

6
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yield the desired correlation functions. This will be done in
section 8. The source field Jq is just a formal device which
was introduced to facilitate the computation of correlation
functions, and it has nothing to do with the intrinsic properties
of the physical system under consideration. If Jq is put to zero,
we have

Z [J = 0] ∼ constant ×
∫

D[X]e−Sr
J 0 . (59)

Thus the dynamics of the fluctuations of order parameters is
encapsulated in the action Sr

J 0. In particular, it determines the
collective excitations, and these are discussed in section 7.

7. Collective excitations

To reveal the structure of the action Sr
J 0 it is convenient

to change the basis of fluctuating order parameters in the
following way. First define

�0 ≡ √�c0� f 0. (60)

Then introduce the following symmetric and antisymmetric
amplitude and phase fluctuations δ�±, θ±:

δ�± = 1√
2
(±δ�c + δ� f ),

(
�0θ+
�0θ−

)
=
⎛

⎝

√
� f 0

2�c0

√
�c0

2� f 0

−
√

� f 0

2�c0

√
�c0

2� f 0

⎞

⎠
(

�c0θc

� f 0θ f

)
.

(61)

The symmetric phase θ+ corresponds to the Goldstone boson
of spontaneously broken electromagnetic U(1) symmetry (see
appendix C for more details).

Then the fluctuating order parameters Xq (40) are
transformed into

X ′
q =

⎡
⎢⎣

δ�+
δ�−
�0θ+
�0θ−

⎤
⎥⎦ = SXq , (62)

where the 4 × 4 transformation matrix S is given by

S =

⎛
⎜⎜⎜⎜⎜⎝

1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0
√

� f 0

2�c0

√
�c0

2� f 0

0 0 −
√

� f 0

2�c0

√
�c0

2� f 0

⎞
⎟⎟⎟⎟⎟⎠

(63)

Then the action Sr
J 0 (54) becomes

Sr
J 0 = 1

2

∑

q

(X ′
−q)

T�r′(q)X ′
q, (64)

where
�r′(q) = (S−1)T�r(q)S−1. (65)

Note that det �r′ = det �r. The vanishing condition of the
real part of the determinant of �r determines the spectra of the
collective excitations which are renormalized by the Coulomb

interaction, since it corresponds to the poles of the Green’s
functions of collective excitations.

The Raman scattering probes the excitations with very
small wavenumber q → 0. In the limit q → 0, the following
polarization functions, π

c/ f
12 (iω, q = 0) and π

c/ f
13 (iω, q = 0),

vanish for the energy bands with a particle–hole symmetry
(see appendix A), which we assume in this paper. Due to
the vanishing of the above correlation functions, the 4 × 4
matrix �r is block-diagonalized into the amplitude block and
the phase block. Namely, the amplitude fluctuations and the
phase fluctuations decouple in the q → 0 limit:

�r(iω, q → 0) =
[

��(iω, q → 0) 0
0 �θ (iω, q → 0)

]
,

(66)
where ��,θ are the 2 × 2 matrices in the amplitude and the
phase block, respectively. The explicit form of each matrix is

�� =
[

π c
11

2
U

2
U π

f
11

]
. (67)

From the above form one can see that the amplitude sector is
free of Coulomb corrections (D(q) terms) in the q → 0 limit:

�θ =[−� f 0

�c0

2
U + π̃ c

22−D(q)[π c
23]2 2

U −D(q)π c
23[ζπ

f
23]

2
U −D(q)π c

23[ζπ
f

23] − �c0
� f 0

2
U + π̃

f
22−D(q)[π f

23]2

]
.

(68)

In the basis of the symmetric (+) and the antisymmetric (−)

fluctuations (via the relation (65)), the matrices become

�r′(iω, q → 0) =
[

��′
(iω, q → 0) 0

0 �θ ′
(iω, q → 0)

]
.

(69)
First note that det ��/θ = det ��/θ ′

. The matrix elements of
�θ ′

are given by (the explicit form of ��′
is not necessary)

�θ ′
++ = 1

2

�c0

� f 0
(π̃ c

22 − D(q)[π c
23]2)

+ 1

2

� f 0

�c0
(π̃

f
22 − D(q)[π f

23]2) − D(q)π c
23(ζπ

f
23),

�θ ′
−− = 1

2

�c0

� f 0
(π̃ c

22 − D(q)[π c
23]2)

+ 1

2

� f 0

�c0
(π̃

f
22 − D(q)[π f

23]2) − 4

U
+ D(q)π c

23(ζπ
f

23),

�θ ′
+− = �θ ′

−+ = −1

2

�c0

� f 0
(π̃ c

22 − D(q)[π c
23]2)

+ 1

2

� f 0

�c0
(π̃

f
22 − D(q)[π f

23]2).

(70)

Using the results obtained for π
c/ f
i j (iω, q = 0) in appendix B

and that (see (49))

D(iω, q = 0) = − 1

π c
33(iω, q = 0) + π

f
33(iω, q = 0)

. (71)

Using the explicit expressions of polarization functions
presented in appendix B it can be shown that (all functions

7
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Figure 1. The plot of the real part of det ��(ω + i0+) in arbitrary
units. The input data are ωD = 100 meV, λc = 0.2171 and
λ f = 0.6676, which give �c0 = 20 meV and � f 0 = 10 meV.

below are to be evaluated at q = 0)

1

2

�c0

� f 0
(π̃ c

22 − D(q)[π c
23]2) = 1

2

(
ω

2�0

)2 Dc Fc D f F f

Dc Fc + D f Ff
,

1

2

� f 0

�c0
(π̃

f
22 − D(q)[π f

23]2) = 1

2

(
ω

2�0

)2 Dc Fc D f F f

Dc Fc + D f Ff
,

D(q)π c
23(ζπ

f
23) =

(
ω

2�0

)2 Dc Fc D f Ff

Dc Fc + D f Ff
.

(72)
The functions Fc/ f (iω) are defined by (B.4). Then from (72) it
follows that

�θ ′
++(iω, q = 0) = 0, �θ ′

+−(iω, q = 0) = 0. (73)

We also note that

�θ ′
++(iω, q → 0)

�θ ′
+−(iω, q → 0)

= 2, (74)

which will be useful later. To obtain the above results it
is absolutely essential to take the screening effect by long
range Coulomb interaction into account. This implies that the
symmetric phase mode decouples and the collective mode in
the phase sector is determined by the condition of Re �θ ′

−−(ω+
i0+, q = 0) = 0.

The collective excitations (of q = 0) coming from the
amplitude fluctuations are determined by

Re[det ��(iω → ω + i0+, q = 0)] = 0,

det ��(iω, q = 0) = π c
11(iω, q = 0)

× π
f

11(iω, q = 0) −
(

2

U

)2

.

(75)

And thanks to (73) the collective excitations (of q = 0) from
the phase fluctuations are determined by

Re[�θ ′
−−(iω → ω + i0+, q = 0)] = 0. (76)

Using (72), (76) can be rephrased as

2

(−iω

2�0

)2

Re

(
Dc Fc D f Ff

Dc Fc + D f Ff

)
− 4

U
= 0. (77)

Figure 2. The plot of the real part of �θ ′
−−(ω + i0+) in arbitrary

units. The input data are identical with those of figure 1.

The spectrum of the collective excitations are to be
obtained in the real frequency domain, so that analytic
continuations (iω → ω + iδ) are made in (75) and (76).
Due to the complicated forms of the polarization functions,
analytic solutions are not feasible. Instead, the equations are
solved graphically using the representative input proposed in
section 4.

Figure 1 shows that there are no zeros, which in turn
implies that there are no collective excitations in the amplitude
sector. The cusp structure at ω = 2� f 0, 2�c0 are to be
expected.

Figure 2 shows that there collective mode does not exist
in the phase sector, either. Thus we do not expect a sharp
resonance behaviour coming from the collective mode in
Raman response.

Now we turn to the discussion of the Anderson–
Bogolyubov mode and the plasmon excitation. Since the
Anderson–Bogolyubov mode and the plasmon excitation
emerge from the phase fluctuation in the one-band supercon-
ductor case, it is natural to expect the similar will happen in
the symmetric phase mode of two-band superconductors. Thus
let us take a close look at �θ ′

++(q). Recall that �θ ′
++ vanishes for

q = 0 (73). It turns out that the next leading terms in |q| come
from the Taylor expansion of π̃

c/ f
22 (iω, q) in |q|2, and from

D̃(q) = D(q) − D(iω, q = 0)

≈ V −1
q

(π c
33 + π

f
33)[V −1

q − (π c
33 + π

f
33)]

, (78)

where π
c/ f
33 in the last line are to be evaluated at q = 0.

Now, recalling that V −1
q,3D ∝ |q|2/e2, V −1

q,2D ∝ |q|/e2 and that

π
c/ f
23 ∝ ω (see (B.9)), we find

�θ ′
++(iω, q) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|q|2
[

A3D(iω) + ω2

e2
B3D(iω)

]
, 3-dim,

|q|
[
|q|A2D(iω) + ω2

e2
B2D(iω)

]
, 2-dim,

(79)
where A2D,3D and B2D,3D are some functions of frequency,
whose detailed forms do not concern us. In the three-
dimensional case, the existence of the plasmon excitation with
energy proportional to e2 is evident from the expression in the
bracket. The two-dimensional case does not seem to support

8
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the plasmon excitation, but that is due to the extremely two-
dimensional band structure. For more realistic anisotropic
three-dimensional band structure the plasmon excitation would
show up.

In any case, in the q → 0 limit, the plasmon excitation
is washed away by the |q|2 factor in front. However, this is
just due to the structure of the density–density type correlation
function. In terms of dielectric functions, we will have one
more factor of Vq multiplied by the density–density correlation
function, which cancels the factor of |q|2 in front. Then the
plasmon excitation will be clearly visible.

To assess the importance of the screening effect of
long range Coulomb interaction, it is useful to consider
the collective excitations in the absence of the Coulomb
interaction. At small ω, q we find an Anderson–Bogolyubov
mode with a velocity (ω = vs |q|)

vs =
(

Dcv
2
c + D f v

2
f

Dc + D f

)1/2

. (80)

Note that this velocity coincides with the one obtained
by Leggett ((3.18) in [12]). Apart from the Anderson–
Bogolyubov mode, we do find one additional collective mode
between 2� f 0 and 2�c0 which is contrary to the previous
case with Coulomb interaction included. Clearly this collective
mode originates from the fluctuation of the relative phases,
so that it belongs to the same category as that of Leggett’s
mode, and it clearly shows up in the Raman response. This
mode between 2� f 0 and 2�c0 originates from the interaction
between the phases of two superconducting order parameters,
but it behaves differently from the relative phase mode (Leggett
mode) of intraband pairing two-band superconductors [12].
Leggett’s collective mode is expected to appear below 2� f 0

(twice the smaller gap) [12]. However, our result is not in
contradiction with that of Leggett since the condition for the
existence of Leggett’s collective mode is

det V = VccVcf − V 2
cf > 0, (81)

where Vcc and V f f are the intraband pairing interactions, and
Vcf is the interband pairing interaction. Our case corresponds
to the one with Vcc = V f f = 0 and Vcf = U , so that
Leggett’s condition is evidently violated. Thus we conclude
that the collective excitation we have found belongs to the same
category as that of Leggett’s mode but in a different parameter
regime. We also note that the condition (81) is independent
of the sign of the interband pairing, which implies that we
will obtain the same result for the attractive interband pairing
interaction which does not have the relative phase between two
gaps.

8. Raman scattering intensity

The functional integral over Xq of (58) can be done exactly,
which yields (recall Sr

J 2, Wq are given by (53) and (57),
respectively)

Z [J ] ≈ e−Ssad−Sr
J 2+ 1

2

∑
q J−q Jq(

∑
i, j W̃−q,i [�r]−1

i j Wq, j ). (82)

Now the partition function has been expressed solely in
terms of the source field Jq , and then from the definition
of correlation function (10), the Raman response correlation
function can be read off (q = (iω, q)):

χρ̃ρ̃(q) = π c
33,γ γ (q) + π

f
33,γ γ (q)

+ D(q)[π c
33,γ 1(q) + π

f
33,γ 1(q)][π c

33,1γ (q) + π
f

33,1γ (q)]
−
∑

i, j

W̃q,i [�r]−1
i j Wq, j . (83)

The first two terms of (83) which come from Sr
J 2 represent

the quasiparticle contribution and the D(q) term from
the Coulomb screening correction to it. The last term
is the contribution from the collective excitations. Thus
in our approach (within the saddle point plus Gaussian
approximation) the contributions from the quasiparticles and
the collective excitations are distinguished from each other.
Evidently there should be processes contributing to the Raman
response which mix quasiparticle and collective excitation,
but these turn out to be subleading, at least in our approach.
Whether this character of the separate contribution is true of
the diagrammatic approach of [18, 19] is not clear. Note
also that (83) is expressed entirely in terms of the (one-loop)
polarization functions only, which are evaluated explicitly at
q = 0 in appendix B.

The Raman response requires the limit q → 0. The
limit can be taken straightforwardly for the quasiparticle
contribution, while for the collective excitation a careful
treatment is necessary as will be shown below. In the limit
q → 0, using the results of appendix B (especially (B.15)), it
can be shown that (αc/ f are parameters characterizing the band
anisotropy, which are defined by (B.16))

Wq=0(iω) = (α f γ
f − αcγ

c)

×
[

0, 0, π c
23

π
f

33

π c
33 + π

f
33

, (ζπ
f

23)
(−π c

33)

π c
33 + π

f
33

]
,

W̃q=0 = −Wq=0, (84)

where all of the polarization functions are to be evaluated at
q = 0. Recall that Wq(iω) is defined by (57). The first
two entries corresponding to the amplitude block vanish since
π

c/ f
13 (iω, q = 0) = 0, π

c/ f
13,γ 1(iω, q = 0) = 0. Thus only

the phase block contributes to the Raman response. However,
this is a feature special to the q = 0 limit, and at finite q the
amplitude fluctuations do contribute.

Now the collective mode contribution (which entirely
comes from the phase block) can be recast as

χθ,ρ̃ρ̃(iω, q = 0) = +
∑

i, j=c, f

W θ
q=0,i [�θ ]−1

i j W θ
q=0, j ,

[W θ
q=0]T = (α f γ

f − αcγ
c)

×
[

π c
23π

f
33

π c
33 + π

f
33

,
(ζπ

f
23)(−π c

33)

π c
33 + π

f
33

]
.

(85)

Let us re-express (85) in the symmetric and the antisymmetric
phase basis using the transformation (65). The result is

9
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(see (66), (69))

χθ,ρ̃ρ̃(iω, q = 0) =
∑

i, j=+,−
W̃ θ

q=0,i [�θ ′ ]−1
i j W̃ θ

q=0, j ,

W̃ θ
q=0,i =

∑

j

(sT)−1
i j W θ

q=0, j ,
(86)

where the matrix s is the phase block (lower right corner) of the
matrix S of (63). Using the results on the polarization functions
in the appendices it can be shown easily that

W̃ θ
q→0(iω) = (α f γ

f − αcγ
c)

×
[ √

2

(ω/2�0)
�θ ′

+−(iω, q → 0),

√
2ω

2�0

Dc Fc · D f Ff

Dc Fc + D f Ff

]
.

(87)

The first entry of (87) is actually zero as �θ ′
+−(iω, q → 0) = 0,

but it is presented in this form since it should be multiplied by
the matrix elements involving the singular limit of �θ ′

+− (see
below). The inverse matrix [�θ ′ ]−1 in the limit q → 0 can be
expressed as (arguments of matrix elements suppressed)

[�θ ′ ]−1 = 1

�θ ′
++�θ ′

−− − (�θ ′
+−)2

[
�θ ′

−− −�θ ′
+−

−�θ ′
+− �θ ′

++

]

= 1

(
�θ ′

++
�θ ′

+−
)�θ ′

−− − �θ ′
+−

⎡

⎣
�θ ′

−−
�θ ′

+−
−1

−1
�θ ′

++
�θ ′

+−

⎤

⎦

= 1

2�θ ′
−−

[ �θ ′
−−

�θ ′
+−

−1

−1 2

]
. (88)

In the last line of the above equation, we have used (74)
and taken the limit �θ ′

+− → 0 where the limit is well
defined. Plugging the result of (88) into (86) and again using
�θ ′

+−(iω, q → 0) = 0, we find that

χθ,ρ̃ρ̃(iω, q → 0) = 2(α f γ f − αcγc)
2

�θ ′
−−(iω, q = 0)

×
(

ω

2�0

)2

(
Dc Fc D f Ff

Dc Fc + D f Ff
)2,

= (α f γ f − αcγc)
2

( ω
2�0

)2(
Dc Fc D f F f

Dc Fc+D f F f
)2

( ω
2�0

)2 Dc Fc D f F f

Dc Fc+D f F f
− 2

U

(89)

The quasiparticle contribution of the Raman response at
q = 0 is

χqp,ρ̃ρ̃ (iω, q = 0) = π c
33,γ γ + π

f
33,γ γ

− [π c
33,γ 1 + π

f
33,γ 1][π c

33,1γ + π
f

33,1γ ]
π c

33 + π
f

33

. (90)

The exact same result as (90) can be obtained by the
conventional perturbative diagram summation method [18, 19].

The Raman vertex factor γk for the lattice with tetragonal
symmetry in various scattering geometries is given by [20]

γA1g(φ) = 1 + γA cos 4φ,

γB1g(φ) = γB1 cos 2φ, γB2g(φ) = γB2 sin 2φ.
(91)

The screening corrections vanish for B1g and B2g symmetry
since the polarization functions π

c/ f
33,γ 1(iω, q = 0) =

Figure 3. The Raman response function in A1g scattering geometry
in the unit of Dc(γ

c
A)2. The anisotropy factors are chosen to be

αc = 0.3, α f = −0.27, and the rest of the input data are identical
with those of figure 1. The solid line is for the response function with
both the quasiparticle contribution with Coulomb screening
correction (90) and the phase fluctuation contributions (89) included,
while the dashed line is for the quasiparticle contribution with
Coulomb screening correction.

π
c/ f
33,1γ (iω, q = 0) vanish. It is because all other integrands

appearing in the evaluation of the polarization functions
have cos(4φ) dependence except for the B1g,2g scattering
vertices, cos(2φ) and sin(2φ), and these angular functions are
orthogonal to each other. Therefore

χB1g,B2g = π c
33,γ γ + π

f
33,γ γ , γ = γB1g,B2g . (92)

As for the A1g geometry the factor of 1 for the A1g geometry
case is seen to be cancelled by the Coulomb correction,
therefore, effectively γA1g(φ) → γA cos 4φ. The matrix
element γA is determined by band structure. From (9) one can
estimate γ

c/ f
A ∼ tc/ f .

The Raman scattering intensity for the A1g geometry is
plotted in figure 3. The inverse square root singularities at
ω = 2� f 0, 2�c0 are well expected. The Coulomb correction
is responsible for the peak structure between 2� f 0 and 2�c0

in the quasiparticle contribution, while the contribution from
phase fluctuation eventually suppresses the peak structure. The
detailed behaviour depends sensitively on the band structure
through the anisotropy αc/ f (B.16).

9. Summary and concluding remarks

We have developed a time-dependent Landau–Ginzburg theory
for the Raman response of the two-band superconductors
following the approach by Hertz [8]. Our approach
can be generalized to a much wider class of problems
of superconductivity. Unlike the standard diagrammatic
approach, the (fluctuations of) order parameters appear
explicitly throughout the course of development, which makes
the understanding of the nature of collective excitations very
clear.

Using the Hubbard–Stratonovich transformations the
pairing interaction and the long range Coulomb interaction
have been expressed in terms of the superconducting order
parameter and the scalar potential, respectively. The functional
integral technique enables us to integrate out the electrons

10
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completely, leaving us with the effective action of the
order parameters. All of the interesting physical properties
are encapsulated in the effective action (or time-dependent
Landau–Ginzburg free energy). The spectrum of the collective
excitations and the correlation functions (including Raman
response) can be obtained from the effective action in a
straightforward way.

This approach has been applied to the sπ pairing model of
the Fe-pnictides. The Raman response was computed up to the
Gaussian fluctuations with the four channels of symmetric and
antisymmetric combinations of the phases and amplitudes of
the two order parameters. The Raman spectra is composed of
the quasiparticle and the phase collective mode contributions
without mixing between them. There are no contributions
from the symmetric or antisymmetric amplitude modes. The
antisymmetric phase mode (Leggett mode) originates from the
fluctuations of the relative phase of the two order parameters.
It lies between twice the smaller gap and twice the larger gap.
It is therefore damped by quasiparticles and its contribution to
the Raman spectra is weak. It turns out that the long range
Coulomb interaction eliminates the Leggett mode.

The weak Raman response of the Leggett mode can,
of course, be expected. Consider the two cases of two-
band superconductivity: interband-dominant and intraband-
dominant pairings. In the former case, one solution gives
pairing but the other does not. In the latter case, both
solutions give pairing, albeit one is of lower Tc. Physically,
it is the existence of this metastable solution that gives
rise to the Leggett mode below twice the smaller gap [12].
For the s± state there is no metastable solution and we do
not expect the Leggett mode response. The long range
Coulomb interaction suppresses it completely by increasing the
quasiparticle damping.

We are currently applying the present formalism to the
spin–spin correlation function at the finite wavevector to
elucidate this point and the distinct features of the (π, π)

resonance mode in the sπ pairing state [22–24]. The result
will be reported in a separate publication.
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Appendix A. Polarization functions

The polarization functions in the main text are defined as
follows. γ

c/ f
k are the Raman vertices defined in (9) and the

Green functions Ĝc/ f are defined in (34). τi with i = 1, 2, 3
are the Pauli matrices and the trace below is done over them.
ζc/ f is 1 for the c-band case and −1 = ζ for the f -band case:

π
c/ f
i j,γ γ (iω, q) = T

N

∑

iε,k

γ
c/ f
k+ q

2
γ

c/ f
k− q

2

× tr(Ĝc/ f (iε, k)τi Ĝc/ f (iε + iω, k + q)τ j ). (A.1)

π
c/ f
i j,γ 1(iω, q) = T

N

∑

iε,k

γ
c/ f
k+ q

2

× tr(Ĝc/ f (iε, k)τi Ĝc/ f (iε + iω, k + q)τ j ). (A.2)

π
c/ f
i j,1γ (iω, q) = T

N

∑

iε,k

γ
c/ f
k− q

2

× tr(Ĝc/ f (iε, k)τi Ĝc/ f (iε + iω, k + q)τ j ). (A.3)

π
c/ f
i j (iω, q) = T

N

∑

iε,k

tr(Ĝc/ f (iε, k)τi

× Ĝc/ f (iε + iω, k + q)τ j ). (A.4)

Below the trace over the Pauli matrices and the frequency
summation are done at T = 0 for the polarization functions
π

c/ f
i j (iω, q), (A.4). The results will be identical for other

polarization functions except for the insertion of Raman
vertices since the Raman vertices γ

c/ f
k do not depend on the

Pauli matrices and the frequency. (Below q = (q, iω).)

π
c/ f
11 (q) = 2

T

N

∑

iε,k

iε(iε + iω) + �2
c/ f 0 − εc/ f kεc/ f k+q

[(iε)2 − E2
c/ f k][(iε + iω)2 − E2

c/ f k+q]

= 1

N

∑

k

Ec/ f k + Ec/ f,k+q

Ec/ f k Ec/ f k+q

× −Ec/ f k Ec/ f k+q + �2
c/ f 0 − εc/ f kεc/ f k+q

ω2 + (Ec/ f k + Ec/ f k+q)2
(A.5)

π
c/ f
22 (q) = 2

T

N

∑

iε,k

iε(iε + iω) − �2
c/ f 0 − εc/ f kεc/ f k+q

[(iε)2 − E2
c/ f k][(iε + iω)2 − E2

c/ f k+q]

= 1

N

∑

k

Ec/ f k + Ec/ f k+q

Ec/ f k Ec/ f k+q

× −Ec/ f k Ec/ f,k+q − �2
c/ f 0 − εc/ f kεc/ f k+q

ω2 + (Ec/ f k + Ec/ f k+q)2
(A.6)

π
c/ f
33 (q) = 2

T

N

∑

iε,k

iε(iε + iω) − �2
c/ f 0 + εc/ f kεc/ f k+q

[(iε)2 − E2
c/ f,k][(iε + iω)2 − E2

c/ f k+q]

= 1

N

∑

k

Ec/ f k + Ec/ f k+q

Ec/ f k Ec/ f k+q

× −Ec/ f k Ec/ f k+q − �2
c/ f 0 + εc/ f kεc/ f k+q

ω2 + (Ec/ f k + Ec/ f k+q)2
(A.7)

π
c/ f
12 (q) = 2

T

N

∑

iε,k

iεc/ f k(iε + iω) + iε(−iεc/ f k+q)

[(iε)2 − E2
c/ f k][(iε + iω)2 − E2

c/ f k+q]

= 1

N

∑

k

iω

Ec/ f k Ec/ f k+q

× iεc/ f k Ec/ f k+q + iεc/ f k+q Ec/ f k

ω2 + (Ec/ f k + Ec/ f k+q)2
(A.8)

π
c/ f
13 (q) = 2

T

N

∑

iε,k

ζc/ f �c/ f 0(εc/ f k + εc/ f k+q)

[(iε)2 − E2
c/ f k][(iε + iω)2 − E2

c/ f k+q]

= 1

N

∑

k

Ec/ f k + Ec/ f k+q

Ec/ f k Ec/ f k+q

× ζc/ f �c/ f 0(εc/ f k + εc/ f k+q)

ω2 + (Ec/ f k + Ec/ f k+q)2
(A.9)
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π
c/ f
23 (q) = 2

T

N

∑

iε,k

i(iω)ζc/ f �c/ f 0

[(iε)2 − E2
c/ f k][(iε + iω)2 − E2

c/ f k+q]

= 1

N

∑

k

Ec/ f k + Ec/ f k+q

Ec/ f k Ec/ f k+q

× i(iω)ζc/ f �c/ f 0

ω2 + (Ec/ f k + Ec/ f k+q)2
. (A.10)

After taking the trace over the Pauli matrices, the following
relations among the polarization functions are easily seen:

π
c/ f
21 (iω, q) = −π

c/ f
12 (iω, q),

π
c/ f
31 (iω, q) = π

c/ f
13 (iω, q),

π
c/ f
32 (iω, q) = −π

c/ f
23 (iω, q).

(A.11)

Note that π
f

13 = π
f

31 and π
f

23 = −π
f

32 are proportional to the
phase factor ζ = −1.

Appendix B. Polarization functions at q = 0

At q = 0, the summands of the wavenumber summation
depend on the wavenumber only through the energy bands.
Introducing the density of states as follows:

Dc/ f (ε) = 1

N

∑

k

δ(ε − εc/ f k) (B.1)

the wavenumber summation can be expressed as (h is a general
function)

1

N

∑

k

h(εc/ f k) =
∫ ∞

−∞
dε h(ε)Dc/ f (ε)

≈ Dc/ f (ε = 0)

∫ ωD

−ωD

dε h(ε), (B.2)

where Dc/ f (ε = 0) ≡ Dc/ f is the density of states at the Fermi
energy and ωD is a cutoff energy.

From the results of the previous section it can be easily
shown

π
c/ f
11 (iω, q = 0) = −

(
1

N

∑

k

1

Ec/ f k

)

+
(

�2
c/ f 0 + ω2

4

)
1

N

∑

k

1

Ec/ f k

1

ω2/4 + E2
c/ f k

. (B.3)

Defining a dimensionless function Fc/ f (iω) as follows:

Fc/ f (iω) =
∫ ωD

�c/ f 0

− ωD
�c/ f 0

dx
1√

x2 + 1

1
(

ω
2�c/ f 0

)2

+ x2 + 1

. (B.4)

Equation (B.3) can be expressed as

π
c/ f
11 (iω, q = 0) = −

(
1

N

∑

k

1

Ec/ f k

)

+
(

1 +
(

ω

2�c/ f 0

)2)
Dc/ f Fc/ f (iω). (B.5)

A simple integral shows that

1

N

∑

k

1

Ec/ f k
= 2Dc/ f ln

2ωD

�c/ f 0
= � f/c0

�c/ f 0

2

U
, (B.6)

where the last equality comes from the gap equation (27).
Similarly, it can be shown that

π
c/ f
22 (iω, q = 0) = − 1

N

∑

k

1

Ec/ f k

+
(

ω

2�c/ f 0

)2

Dc/ f Fc/ f (iω). (B.7)

Then we have (see (44))

π̃
c/ f
22 (iω, q = 0) =

(
ω

2�c/ f 0

)2

Dc/ f Fc/ f (iω). (B.8)

Similarly, it is easily shown that

π
c/ f
33 (iω, q = 0) = −Dc/ f Fc/ f (iω),

π
c/ f
23 (iω, q = 0) = i

(
iω

2�c/ f 0

)
ζc/ f Dc/ f Fc/ f (iω),

π
c/ f
32 (iω, q = 0) = −π

c/ f
23 (iω, q = 0).

(B.9)

At q = 0, the integrands of π
c/ f
12 and π

c/ f
13 are proportional to

ε, making the integrands an odd function, so that their integral
vanishes:

π
c/ f
12 (iω, q = 0) = π

c/ f
21 (iω, q = 0) = 0,

π
c/ f
13 (iω, q = 0) = π

c/ f
31 (iω, q = 0) = 0.

(B.10)

For the polarization functions with Raman vertices
γ

c/ f
A cos(4φ) inserted, we have to take the average of the

vertices over the Fermi surface [20]. This averaging has
nothing to do with the particle–hole symmetry, so that the
following hold (along with (1 ↔ 2, 1 ↔ 3) counterparts)):

π
c/ f
12,γ γ (iω, q = 0) = π

c/ f
12,γ 1(iω, q = 0) = 0,

π
c/ f
13,γ γ (iω, q = 0) = π

c/ f
13,γ 1(iω, q = 0) = 0.

(B.11)

In the case of π
c/ f
33,γA1gγA1g

of A1g scattering geometry, the
relevant density of states is

Dc/ f,γ γ = 1

N

∑

k

(γ
c/ f
A )2 cos2(4φ)δ(ε − εc/ f k). (B.12)

The average of cos2(4φ) provides just a factor of 1/2, and we
obtain

π
c/ f
33,γA1gγA1g

(iω) = (γ
c/ f
A )2

2
π

c/ f
33 (iω). (B.13)

For B1g and B2g scattering geometries, cos2(2φ) and sin2(2φ)

should be inserted instead, yielding the same result as (B.13).
In the case of π

c/ f
33,γA1g1 and π

c/ f
23,γA1g1, the relevant density of

states is

Dc/ f,γ 1 = 1

N

∑

k

(γ
c/ f
A ) cos(4φ)δ(ε − εc/ f k). (B.14)
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This density of states would vanish if it were not for the
anisotropy of the energy bands. Using the energy band of (3)
and the assumption of small anisotropy, we obtain

π
c/ f
33,γA1g1(iω) = αc/ f γ

c/ f
A π

c/ f
31 (iω),

π
c/ f
23,γA1g1(iω) = αc/ f γ

c/ f
A π

c/ f
23 (iω),

(B.15)

where αc/ f is a dimensionless parameter characterizing the
anisotropy of the energy band:

αc/ f = t ′
c/ f ε0c/ f

t2
c/ f

, |αc/ f | � 1. (B.16)

Since the integral (B.4) is convergent in the limit |x | →
∞, one can perform the integral with ωD/�c/ f 0 → ∞. To
obtain the results in the real frequency domain we have to make
an analytic continuation iω → ω + i0+. Define the following
complex functions g(x):

g(x) = gR(x) + igI (x),

gR(x) = −�(x − 1)
2 ln(x + √

x2 − 1)

x
√

x2 − 1

+ 2�(1 − x)
tan−1 x√

1−x2

x
√

1 − x2
,

gI (x) = π
�(x − 1)

x
√

x2 − 1
,

(B.17)

where �(x) is a step function. Then a straightforward integral
shows

Fc/ f (iω → ω + i0+) = g

(
ω

2�c/ f 0

)
. (B.18)

Now all of the polarization functions at q = 0 have been
obtained in terms of the function Fc/ f .

Appendix C. The gauge invariance and the
conservation law of electromagnetic responses in
two-band superconductors

In this appendix we show that the induced current of two-band
superconductors in the presence of an external electromagnetic
field satisfies the charge conservation law by generalizing
a proof by Weinberg as presented in [25]. This implies,
in particular, all of the electromagnetic response functions
satisfy the charge conservation law (or, equivalently, Ward
identities) since the response functions are obtained by taking
the derivatives of the current with respect to the external
electromagnetic fields.

We first note that in our model the spontaneously broken
symmetry is the diagonal U(1) symmetry:

c → eiαc, f → eiα f, (C.1)

and the associated electric charge is

Q = e
∑

x,σ

(c†
σxcσx + f †

σx fσx). (C.2)

Each charge e
∑

x(c
†c) and e

∑
x( f † f ) is not conserved

separately due to the interband pairing interaction. The general
phase rotation:

c → eiαc c, f → eiα f f (C.3)

is not a symmetry due to the interband pairing interaction. By
writing

αc/ f = αc + α f

2
± αc − α f

2
(C.4)

one can see that the symmetric phase is the Goldstone field
associated with the spontaneously broken U(1) symmetry,
while the antisymmetric phase is neutral.

In our approach, the fermions (c, f ) are integrated
out exactly via Hubbard–Stratonovich transformation, and
we are left with the effective field theory of the bosonic
fluctuating complex order parameters (�c,� f ) interacting
with electromagnetic fields. Introducing an external
electromagnetic field Aμ, the partition function becomes

Z [Aμ] =
∫

D[�c,� f , φ] e−SB,

SB =
∫ β

0
dτ

[∑

x

1

U
[�∗

cx(τ )� f x(τ ) + �∗
f x(τ )�cx(τ )]

+
∑

q

1
2 V −1

q φ−q(τ )φq(τ )

]

− ln det(M̂P(Aμ) + M̂C(Aμ)).

(C.5)

Equation (C.5) is an exact result. Expressing the order
parameters �c, f in terms of amplitude and phase

�c/ f (x) = |�c/ f (x)| eiθc/ f (x), (C.6)

it is clear that the amplitudes |�c/ f (x)| and the relative
(antisymmetric combination) phase θc − θ f (x) are gauge-
invariant quantities. Thus �∗

cx(τ )� f x(τ ) + �∗
f x(τ )�cx(τ ) is

also gauge-invariant. The external electromagnetic field is
coupled via the kernel M̂P,C:

M̂P =
(

K̂c 0
0 K̂ f

)
, (C.7)

where the kernel matrices are given by

K̂c =(
∂τ + iA0 + εc(−i∇ − e �A) �c

�∗
c ∂τ + iA0 − εc(−i∇ − e �A)

)
,

K̂ f =
(

∂τ + iA0 + ε f (−i∇ − e �A) ζ� f

ζ�∗
f ∂τ + iA0 − ε f (−i∇ − e �A)

)
.

(C.8)

Now perform the gauge transformations on �c/ f by
ei(θc+θ f )/2 in the functional integral. Then the complex order
parameters �c/ f are left only with the amplitude and the
relative phase, which are gauge-invariant. Note that we do not
apply gauge transformations on the external electromagnetic
field. By the minimal coupling of gauge fields (covariant
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derivative), the gauge transformation modifies the derivative in
the following way (θ+ = (θc + θ f )/2):

∂μ → ∂μ − i∂μθ+. (C.9)

Of course, θ+ is the Goldstone field associated with the
spontaneously broken U(1) symmetry and it generates
a supercurrent. From this result one can see that
the longitudinal electromagnetic response couples to the
(longitudinal) supercurrent. After the gauge transformation the
effective action takes the form

SB = SB[Aμ − i∂μθ+, |�c/ f |, θ−]. (C.10)

Then the induced current is given by

Jμ =
〈

δS

δAμ

〉
=
〈
i

δS

δ∂μθ+

〉
, (C.11)

where the average is taken with respect to the partition
functions Z [Aμ].

Now the equation of motion of θ+ is
〈
∂μ

δS

δ∂μθ+

〉
=
〈

δS

δθ+

〉
= 0, (C.12)

where the right-hand side becomes zero since the θ+ appears
in the action only as a derivative (recall θ+ is a Goldstone
boson). By (C.11) the equation of motion implies the current
conservation:

∂τ J 0 + ∇ · �J = 0. (C.13)

One can verify various Ward identities of response functions
by taking the functional derivative of (C.13) with respect to Aμ

(recall that Jμ is a functional of Aμ). Our study is equivalent
to the computation of the induced current Jμ in the Gaussian
approximation.
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